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Abstract 

This paper present a robust and efficient way of tuning PID controller using three variants of 

swam intelligence algorithms for disturbance attenuation, and control of a positioning system. 

While many tuning algorithms focuses on getting the best PID gains that will enable the system 

to track the command input, and little or no attention is paid on the effect of those gains on 

disturbance resulting from external natural and artificial sources. Out of the three variants 

considered, comprehensive learning particle swarm optimization (CLPSO) appear to be more 

promising in rapidly attenuating (mitigating) the effect of disturbance on the system with a 

maximum disturbance response amplitude of 0.000329, and peak overshoot of 0.00635 (0.635%), 

rise time of  0.01s, and setting time of 0.01s. The second most promising algorithm is toroidal 

bound CLPSO with disturbance response amplitude of 0.000518, and peak overshoot of 0.0812 

(8.12%). These results depicts the robustness of swarm intelligence algorithm variants 

implemented, in combating the effects of external disturbance on the position controlled system, 

and at the same time achieving a very low peak overshoot, rise time and settling time.  

Keywords: — Swarm intelligent algorithms, PID controller, Disturbance Step response, 

Ziegler–Nichols tuning method, optimization, objective fitness function.  

—————————— —————————— 

1. Introduction 

ONe of the major challenge of any 

positioning control system is the ability to 

manage unpredictable changes inherent 

within the system, or from its environment. 

Positioning systems are face with different 

kind of challenges depending on their 

application and the environment they are 

designed to be used, among these are external 

disturbance from natural events such as wind, 

thunder strike, e.t.c. and artificial events such 

as explosive, and unpredictable change in 

position of their target for non-stationary 

target. To mitigate the chances of the system 

missing its command input (target), and at the 

same time mitigating the effect of 

disturbance resulting from external sources, 

we proposed a generalised intelligent control 

schemes for positioning systems that uses DC 

motor to track its target in a dynamically 

changing environment. The schemes 

presented in this paper is based on swarm 

intelligent algorithms framework using PID 

controller. 

2. Optimization or Tuning Algorithms 

A brief description of the optimization 

algorithms implemented are presented in this 

section. The advantages of global search 

capability of population based Particle 

Swarm Intelligence Algorithms (PSIA) 

variants were explored in evolving the gains 
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of the PID controller. The complexity of 

many heuristic controllers becomes 

increasingly complicated due to meta 

parameters (free parameters) in the model or 

controller frame work that govern their 

behaviour and efficiency in optimizing a 

given problem. How best a given optimizer 

can solve a given problem, depends on the 

correct choice of the free parameters. The 

values of those parameters are problem 

dependent and cannot be generalized, hence 

for each problem, those parameters need to 

be fined tune to get the optimum or near 

optimum. The tuning constitute another 

optimization problem. The PID gains of the 

positioning system depicted in this paper 

were optimized using population based 

randomization optimization algorithms based 

on particle swarm intelligent framework. 

 

2.1. Comprehensive Learning Particle 

Swarm Optimization (CLPSO) 

Three algorithms which are based on particle 

swarm intelligence framework were 

implemented for tuning the PID controller. 

These three particle swarm optimization 

(PSO) variants are: the standard PSO with 

inertia weight [8] and the CLPSO with 

boundary constrain, and CLPSO with 

toroidal bound [3]. PSO emulates the swarm 

behaviour of which each member of the 

swarm adjust it search path by learning from 

its own experience and other members' 

experiences. The velocity update of PSO and 

CLPSO are giving by Eq. (2) and (1) 

respectively, the particles update for both 

PSO and CLPSO is depicted by Eq (3). In the 

inertia weighted PSO, each of the particles 

learn from its local best pbest and the global 

best gbest for all dimension of the particles. 

The meta parameters C1 and C2 are the 

acceleration constants that reflect the 

weighting of the stochastic acceleration term 

that pull each particle toward pbest and gbest 

respectively. The inertia weight w is used to 

enhance both global and local search. Large 

w is explorative which facilitate global 

search while smaller values is exploitative 

which favoured local search. In this study w 

was made to decrease exponentially as the 

generation progresses. This approach 

facilitate explorative global search within the 

early stage (generations) and then start to 

favour exploitative local search as the 

generation comes to an end. In standard PSO, 

all particles learn from its own pbest and 

gbest for all dimension. Constraining the 

social learning aspect to only the gbest lead 

to premature convergence of the original 

PSO. Since all particles in the swarm learn 

from the current gbest even if the gbest is 

very far from the global optimum. Thus all 

the particles stand the risk of been attracted 

to gbest and get trapped in a local optimum 

especially when solving complex problems 

with multi-local optimums. To circumvent 

the problem of premature convergence 

associated with the standard PSO, a CLPSO 

was proposed [3]. In CLPSO, instead of 

particles learning from its pbest and gbest for 

all dimensions, and for all generations, each 

element or dimension of a particle can learn 

from any other particle's pbest including its 

own pbest. The decision on whether a 

particle's dimension should learn from its 

own pbest or other particles' pbest depends 

on the probability Pc called the learning 

probability. Each particle has its own Pc. For 
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every dimension of ith particle, a random 

number in the range [0, 1] is generated, if this 

random number is greater than Pci, the 

particular dimension will learn from its own 

pbest otherwise it will learn from another 

particle's pbest. To ensure that at least one of 

the dimension of each particle learn from 

another particle's pbest, if all dimensions 

happen to learn from its own pbest, one 

dimension is pick at random and two 

particles are pick at random from the 

population, the selected dimension will learn 

from the corresponding dimension of the 

particle with the best fitness (pbest). In this 

study, Pci is given by Eq. (4), [3].  

 

𝑉𝑖
𝑑 = 𝑤𝑖 . 𝑉𝑖

𝑑 + 𝐶1. 𝑟𝑎𝑛𝑑1𝑖
𝑑(𝑝𝑏𝑒𝑠𝑡𝑖

𝑑 −

𝑋𝑖
𝑑) + 𝐶2. 𝑟𝑎𝑛𝑑2𝑖

𝑑(𝑔𝑏𝑒𝑠𝑡𝑖
𝑑 − 𝑋𝑖

𝑑) (1) 

 

𝑉𝑖
𝑑 = 𝑤𝑖 . 𝑉𝑖

𝑑 + 𝐶. 𝑟𝑎𝑛𝑑𝑖
𝑑(𝑝𝑏𝑒𝑠𝑡𝑓𝑖(𝑑)

𝑑 − 𝑋𝑖
𝑑)

      (2) 

Where 𝑝𝑏𝑒𝑠𝑡𝑓𝑖(𝑑)
𝑑  is any particle's pbest 

including particle i pbest.  fi= 

[fi(1),fi(2),…,fi(D)] defined which particles' 

pbests the particle i should learn from or 

follow after. D is particle dimension, randd
i is 

a random number in the range [0, 1], and each 

particle dimension d has its own randd
i. X 

referred to particles' positions (potential 

candidate solutions) while C is the 

acceleration pull. Vi is the velocity of particle 

i. 

𝑋𝑖
𝑑 = 𝑋𝑖

𝑑 + 𝑉𝑖
𝑑    (3) 

𝑃𝑐𝑖 = 0.05 + 0.45(
𝑒

10(𝑖−1)
𝑆𝑆−1 −1

𝑒10−1
)  (4) 

Where SS is the swarm size (number of 

particles).  

2.2. Selection process 

When the particles are updated, the fitness of 

each updated particle f(Xi) is compared with 

the fitness of its local best f(pbesti), to 

determine the next generation local bests. If 

f(Xi)  < f(pbesti) the updated particle Xi will 

replaced its local best pbesti in the next 

generation, otherwise the local best will be 

allowed to continue in the next generation. 

This scheme is based on the principles of 

survival of the fittest. This is called the 

greedy selection scheme. The fitness of each 

local best f(pbesti) is further compared with 

that of the global best f(gbest). If f(pbesti)< 

f(gbesti) the global best gbest will be replaced 

by the particular local best pbesti otherwise it 

will be maintained in the next generation. 

The final global best is used to control the 

system. The tuning fitness function used in 

this research is the weighted sum of the peak 

overshot (over or under shot), rise time and 

the settling time when a unit step input 

command is used.  

2.3. Fitness Function Evaluation 

The optimization problem presented in this 

research is a multi-objectives optimization 

problem since there are three cost functions 

to be minimized i.e. the maximum overshot 

(Mo), rise time (Tr) and settling time (Ts). In 

order to get a robust controller gains that can 

mitigate the effects or external disturbance, 

the problem is converted to single objective 

problem with one cost function consisting of 

the weighted sum of the three objective 

functions, Eq (5). The weights depends on 

the important or cost of risk resulting from 
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that particular performance index. This 

approach is robust because different models 

can be evolved by just changing the weight to 

meet up with setting system performance 

specifications. 

𝛾 = 𝛼𝑜𝑀𝑜 + 𝛼𝑟𝑇𝑟 + 𝛼𝑠𝑇𝑠  (5) 

Where: γ is the overall fitness function, Mo is 

the peak overshot, Tr is the rise time and Ts 

settling time, while αo, αr, and αs are their 

weights respectively.  For this research work, 

after a manual tuning and trial, the following 

values were used with Mo having the highest 

priority, αo =3, αr=1, and αs=1. Note the 

maximum value the weight can take for this 

application is not limited to any range. The 

choice is heuristics. 

3. Proportional Plus Integral Plus 

Derivative (PID) Controller 

It is interesting to know that nearly half of the 

industrial controllers used today are PID 

controllers, or modified PID or derivatives of 

PID controllers.  Some intelligent controllers 

e.g. Fuzzy logic or adaptive neuro-fuzzy 

controllers are derivatives of basic PID i.e. 

they make use of the error and its derivative 

(rate of change of the error). There are 

different variant of the PID controller, the 

one used in this research is depicted by Eq. 

(6) while the transfer function Gc(s) of the 

controller is given by Eq. (7) [2][1][4][5]. A 

proportional controller will have the effect of 

reducing the rise time, but will not eliminate 

the steady-state error. Because of the present 

of pole at the origin introduced by the integral 

controller, the integral controller will have 

the capacity of eliminating the steady-state 

error, but it may make the transient response 

worse. The derivative controller will have the 

effect of increasing the stability of the 

system, reducing the overshoot, and 

improving the transient response. The 

derivative controller predict future error 

using the rate at which the error is changing 

while the integral captured the cumulative 

effects of past errors to improve the system 

performance. 

𝑃𝐼𝐷 = 𝐾𝑝(𝑒(𝑡) + 
1

𝑇𝑖
∫ 𝑒(𝑡)

𝑡

𝑡0
𝑑𝑡 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
)

   (6) 

𝐺𝑐(𝑠) = 𝐾𝑝(1 + 
1

𝑇𝑖𝑠
 +  𝑇𝑑𝑠)  

   (7) 

Where: t is time, e(t) is present error at time 

t, Kp is the proportional gain while Ti and Td 

are integral and derivative time constants 

respectively, s is Laplace complex notation. 

Tuning of the PID gains (Kp, Ti and Td) 

Ziegler–Nichols 

The process of selecting the controller 

parameters Kp, Ti and Td to satisfy a given 

performance specifications is known as 

controller tuning. Different variants of 

population based particle swarm intelligence 

algorithms (PSIA) were used to evolve the 

PID gains for eliminating or mitigating the 

effects of disturbance due to external sources, 

and at the same time tracking the command 

input (target). One of the major challenge is 

to define the decision search space i.e. the 

range within which each of the free meta 

parameters (Kp, Ti and Td ) of the controller 

should be searched. To address this problem, 

Ziegler–Nichols tuning method was used to 

obtain the centre of the radius of the search 
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decision space. The Ziegler–Nichols 

reference gains were obtained using the 

mathematical model of the positioning 

system shown in Fig. (2). The centre of the 

radius for the decision search space for the 

gains Kp, Ti and Td are given by equations (8), 

(9) and (10) respectively [2]. 

𝐾𝑝 = 0.6𝐾𝑐𝑟   (8) 

𝑇𝑖 = 0.5𝑃𝑐𝑟    (9) 

𝑇𝑑 = 0.125𝑃𝑐𝑟   (10) 

Where Kcr and Pcr are the critical gain and 

critical frequency for self-sustained 

oscillation (instability) of the system. 

The decision search space for each of the 

gains were obtained as follows: 

𝐾𝑝(𝑠𝑝𝑎𝑐𝑒) = [𝛼𝑚𝑖𝑛𝐾𝑝, 𝛼𝑚𝑎𝑥𝐾𝑝] 

 (11) 

𝑇𝑖(𝑠𝑝𝑎𝑐𝑒) = [𝛽𝑚𝑖𝑛𝑇𝑖 , 𝛽𝑚𝑎𝑥𝑇𝑖]  

 (12) 

𝑇𝑑(𝑠𝑝𝑎𝑐𝑒) = [µ𝑚𝑖𝑛𝑇𝑑 , µ𝑚𝑎𝑥𝑇𝑑]  

 (13) 

Kp, Ti and Td are given by equations (8), (9) 

and (10) respectively while after a manual 

tuning, the minimum and maximum values of 

α, β and µ were obtained as follows:   

𝛼𝑚𝑖𝑛 = 0.4, 𝛽𝑚𝑖𝑛 = 0.2, µ𝑚𝑖𝑛 =

0.2,  𝛼𝑚𝑎𝑥 = 5, 𝛽𝑚𝑎𝑥 = 4, µ𝑚𝑎𝑥 = 4 

 

3.1. Mathematical model of the 

positioning system 

The rotation of the positioning system to 

meet up with a given target specifications is 

achieved using DC motor. 

𝑉 = 𝑅𝑎𝐼𝑎 + 𝐿𝑎
𝑑𝐼𝑎

𝑑𝑡
+ 𝐸𝑏   (14) 

𝑇 = 𝐽
𝑑𝑤

𝑑𝑡
+ 𝐹𝑤    (15) 

𝐸𝑏 = 𝐾𝑏𝑤     (16) 

𝑇 = 𝐾𝑡𝐼𝑎     (17) 

𝑤 =
𝑑ϴ 

𝑑𝑡
     (18) 

Where V is motor terminal supply voltage, Ra 

armature resistance, La is armature 

inductance, Ia is armature current, Eb is back 

emf (electromotive force), T is the torque, w 

is the angular speed in rad/s, J is the inertia 

constant, while F is the viscose constant, Kb 

is the back emf constant, t is time and ϴ is 

angular position in radian. 

The block diagram shown in Fig. 1 was 

obtain using equations (14) to (18) along with 

the controller, where ϴR is the command 

reference input angle while ϴ is the actual 

system output. 

4. Results 

Each of the swarm intelligence variant is run 

for 2000 generations consisting of 10 

potential candidate particles.  At the end of 

the generation, the must fitted (best) 

candidate is used to set the PID gains. The 

fitness function used during the training is the 

weighted sum of the peak overshot, rise time 

and settling time, Eq. (5). The evolved best 

candidate was used to control the positioning 

system using three different approaches, i.e. 

the system was tested using standard ram and 

parabolic input command. Thirdly a real 

world scenario was modelled as a command 

input to see how the output of the system can 

track the target input. Step response of 

disturbance due to external sources were also 

observed. The performance index used to 

evaluate the accuracy of the system in 

tracking the command input is the root mean 

square error (RMSE) given by Eq. (19) [6]. It 

is interesting to note that the fact that the 

system depicted good performance for 
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standard ram and parabolic input with low 

RMSE does not necessarily mean that the 

system will perform optimally when 

subjected to real world scenario. This is 

revealed when the untune controller obtain 

directly using Ziegler–Nichols method was 

used. The step response for tuned and untune 

PID using CLPSO and inertia PSO are as 

shown in fig 2 and Fig. 3 respectively. The 

summary of the results obtained are depicted 

in Table 1. This  research also validate that 

PID gains obtained using Ziegler–Nichols 

method may not be the optimum but is a 

useful tool for obtaining the radius of the 

decision search space within which the 

optimum or near optimum are likely to be 

found. The details of the numerical results 

obtained from the three PSIA variants 

implemented in this research are shown in 

Table 1, and Fig. 2 to 6. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (ϴ𝑅𝑖 − ϴ𝑖)2𝑁

𝑖=1   (19) 

Where: RMSE is the root mean square error, 

N is the number of simulation time steps, ϴRi 

and ϴi are the command input and the actual 

output at time index i respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1: Block diagram of the control positioning system 
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 Fig. 2: Unit step response using CLPSO 

 

Fig 3: Unit step response using inertia PSO 

 

Fig. 4: Real world tracking using CLPSO to tune PID gains  
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Fig. 4: Real world tracking using CLPSO to tune PID gains 

 

Fig. 5:  Disturbance unit step response using CLPSO 

 

Fig. 6:  Disturbance unit step response using inertia PSO 
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Table 1: Performance of the PSO variants implemented  

Algorithms Real 

world 

MSE 

Max 

Disturbance 

Max 

Overshot 

Rise 

Time 

Settling 

Time 

Fitness 

CLPSO 

Toroidal 

1.5814 0.000518 

0.08129 0.01 0.02 0.050432 

CLPSO 2.3962 

       
0.000329 

0.006354 0.01 0.01 0.039061 

PSO Toroidal 3.0213   0.000703 0.009914 0.02 0.03 0.079742 

 

 

5. Conclusion  

Particle swarm intelligence algorithms 

variants proved to be a robust and efficient 

optimizer for tuning the PID controller 

toward mitigating the effects of external 

disturbance on the control system, and at the 

same time tracking the command input 

(target). With CLPSO algorithm using 

boundary conditions for constraint 

optimization emerging as the best for 

addressing this particular control problem 

with maximum disturbance step response of 

0.000329, and peak overshot of 0.00635 

(0.635%). The next most promising 

algorithm is toroidal bound CLPSO.  
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